¡3.000 artículos!


¡Ya hemos llegado a los 3.000 artículos publicados! Vega 0.0 arrancó el 19 de Septiembre de 2010, tras el CEA XIX en Madrid. El 6 de Junio de 2012 llegamos a los 1.000 primeros artículos, el 19 de marzo de 2014 a los 2.000 artículos y, en estos cinco años y medio se han publicado 3.000 artículos en total y recibido más de 1.295.000 visitas (una media de ¡20.000 visitas al mes!).

¡Muchas gracias a todos aquellos que visitáis la web! También quiero agradecer de manera especial la ayuda que durante todo este tiempo Verónica Casanova me ha prestado y sin la cual aún estaría esta página a "años-luz" de llegar a estas cantidades.

Entradas del mes de febrero de 2016

[Nota: Este artículo es una recopilación de todas las entradas publicadas durante este mes]


Constelaciones de febrero

Fran Sevilla 31 enero, 2016 - 11:03 pm 

EL CIELO A SIMPLE VISTA

CONSTELACIONES, ESTRELLAS BRILLANTES Y PLANETAS EN FEBRERO 2016 

Los anocheceres de febrero, entre el final del crepúsculo y la medianoche, nos permiten ver en la eclíptica, culminando a gran altura, la constelación de TAURO, con el singular cúmulo abierto de Las Pléyades (M45), y la gigante naranja Aldebarán (Alpha Tau), el “rojo ojo del toro celeste”; y seguidamente, la constelación de GÉMINIS, con Cástor y Pólux. (Alpha y Beta Gem). 

Debajo de ellas vemos al formidable ORIÓN “el cazador” con su característico cinturón que alinea de izquierda a derecha a AlnitakAlnilam y Mintaka (Zeta, Épsilon y Delta Ori ); un poco más abajo tenemos su “tahalí” donde con unos simples prismáticos podemos ver la brillante Nebulosa de Orión (M42); también nos llamarán la atención la dorada Betelgeuse (Alpha Ori), en el hombro del brazo que levanta la espada, y la brillante Rígel, (Beta Ori) en el pie avanzado. Más abajo, también sobre el horizonte meridional, la estrella más brillante del firmamento nocturno, Sirio (Alpha CMa) en la constelación del CAN MAYOR, y a su izquierda y por encima, al otro lado de la Vía Láctea, la estrella principal del CAN MENORProción (Alpha CMi).

APOD del cometa Churyumov–Gerasimenko

Cometa 67P en diciembre 2014. Crédito: ESA

Las imágenes del cometa 67P/Churyumov–Gerasimenko tomadas por la misión Rosetta no dejan de sorprendernos. Aquí os traemos una que fue la imagen del APOD del 23 de noviembre de 2014. Muestra un barranco de un kilómetro de altura.

Japeto

Uno de los más enigmáticos satélites del Sistema Solar orbita Saturno. Se trata de Japeto. Japeto tiene un diámetro de 1.500 kilómetros, un periodo orbital de 79 días en una órbita de radio 3.561.000 kilómetros y fue descubierto por Cassini en 1.671.

El misterio rodea a Japeto debido a que un hemisferio del satélite es más oscuro que otro. La diferencia de albero es de 0,05 en el lado oscuro hasta 0,5 en el lado brillante. El posible motivo de dicha diferencia podría radicar en una diferente composición de los materiales de la superficie debido a materiales provenientes de otros satélites o anillos, aunque no hay seguridad en el motivo real (Se sospecha fuertemente que sería debido a los anillos). Esta característica superficial explica el motivo por el que Cassini en el siglo XVII observó que podía ver a Japeto en un lado de Saturno, pero no en el otro. Pero no solo su diferencia de tonalidad superficial le hace diferente. También tiene una órbita mucho mayor que la de otros grandes satélites de Saturno y sus 15º de inclinación orbital le diferencia de los demás.

El problema de la medida en mecánica cuántica


Uno de los postulados de la física cuántica establece la conocida como reducción del estado cuántico según la cual, si |f(inicial)> se efectúa una medida ideal de una magnitud A que da valor de A dentro de un intervalo S, el estado tras la medida será |f(final)>=P(S)|f(inicial)>, siendo P(S) el proyector ortogonal correspondiente a S. Así el uso de un aparato de medida M introduce una transformación según la cual |f(inicial)> se convierte en |f(final)>, mediando un colapso de la función de onda y que resulta incompatible con las leyes de evolución cuántica de Schrödinger. A esta situación se la conoce como el problema de la medida.

Un caso para comprender el problema

Para estudiar esta situación, planteemos el siguiente caso. Se desea medir idealmente un observable A de un sistemas de estados e(P) al que denominaremos partícula. Dado un dispositivo M y pudiendo A tomar los valores +a y -a, M podrá indicar una medida neutra |g(0)>, una medida A=+a |g(+)> y una medida A=-a |g(-)>. El proceso de medida comienza en un estado |g(0)> correspondiente a la posición neutra del aparato de medición. Si el estado inicial de la partícula fuese |f(+)>, la medida daría A=+a, siguiendo la siguiente pauta: 
      |f(+)>·|g(0)> --(ES)--> |f(+)>·|g(+)> 
donde ES corresponde a la evolución de acuerdo a la ecuación de Schrödinger. Si hubiese sido |f(-)>, la pauta sería: 
      |f(-)>·|g(0)> --(ES)--> |f(-)>·|g(-)> 
y el aparato de medida indicaría A=-a.

Los quásares. Misteriosos objetos en los confines del Universo


Los quásares, u objetos casi-estelares, fueron descubiertos a comienzos de la década de 1960 y en la actualidad se conocen más de 200.000. Inicialmente, y ante la apariencia que presentaban de objetos puntuales y en base a las líneas de emisión observadas en sus espectros, se consideraron estrellas. Sin embargo, un análisis más profundo del espectro arrojó un resultado inesperado. Estos objetos presentaban unos desplazamientos al rojo (z) muy elevados. Así por ejemplo 3C273 tenía un desplazamiento al rojo de 0,158 y 3C48 de 0,367. Como ya es sabido, y por la ley de Hubble, la distancia que nos separa a las galaxias (y otros objetos extragalácticos) es proporcional al desplazamiento al rojo que presenten (siempre teniendo en cuenta movimientos propios, que desvirtúa esta ley para objetos cercanos).

Actualmente las distancias estimadas para estos objetos, en base al desplazamiento al rojo medido, van desde 240 Mpc (z=0,06) hasta 6 Gpc (z=6,5. Nota: Mpc: megaparsec. Gpc: gigaparsec. 1 parsec equivale a 3,26 años luz). Otros estudios han presentado otra interesante característica en algunos quásares: presenta espectros de absorción, y estos pueden tener diferente desplazamiento al rojo que los de emisión.

Titania. Satélite de Urano


Titania, satélite de Urano, fue descubierto por William Herschel el 11 de Enero de 1787. Su nombre procede se un personaje de la obra "El sueño de una noche de verano" de Shakespeare.

Se trata del mayor satélite de Urano, con un diámetro de 1.575 kilómetros, y su órbita es de 436.000 kilómetros, con baja excentricidad y la completa en 8,7 días. Como coincide con el periodo de rotación sobre su eje, al igual que otros satélites, siempre presenta la misma cara al planeta.

Su superficie es oscura, ligeramente rojiza y presenta alta densidad de cráteres, alguno de ellos de más de 300 kilómetros, como el cráter Gertrude, de 326 kilómetros de diámetro. No obstante, no presenta la misma densidad de craterización que Oberón. También presenta enormes cañones, posiblemente formados en una fase temprana de su formación, debido a la expansión del cuerpo. El más destacado es el cañón denominado Messina Chasma, que recorre 1.500 kilómetros a lo largo de la superficie. Así mismo, algunas de las fosas observadas, tienen un de hasta 20 kilómetros, y hasta 5 de profundidad. Este satélite esta compuesto posiblemente a partes iguales de hielo y roca, teniendo un manto de hielo y un núcleo rocoso.

Problemas de la física a comienzos del siglo XX

Max Planck
Fundamentalmente fueron tres y dieron lugar al nacimiento de la física moderna.

1. Radiación de cuerpo negro:
Un cuerpo a altas temperaturas emite en todas frecuencias: la intensidad tiende a 0 para longitudes de onda muy cortas o muy largas. Presenta un máximo en gráfico I/l (Intensidad frente a longitud de onda) en lmax que depende de la temperatura. Si se cierra una superficie a estilo de un horno y observamos, descubrimos que:
       lmaxT = C0 = 0,2898 cm K
que se conoce como la Ley desplazamiento de Wien, que da que C0 es constante universal. La distribución espectral independiente de la forma de la cavidad y del material de la superficie del cuerpo negro es aquella que absorve toda radiación que incide sobre ella. La radiación de cuerpo negro es aquella que emerge por el orificio. Planck resuelve el misterio en 1900: solo se puede tomar o ceder electrones en cantidades de energía en porciones:  E=hv
Se conoce como la Ley de radiación de Planck a:

Fundamentos de astronomía de rayos gamma (y II)


Detección de los rayos gamma

Hay tres formas de realizar la detección de estas energéticas partículas:
- Efecto fotoeléctrico: El rayo gamma interactúa con un electrón transfiriéndole su energía. El electrón es expulsado del átomo. Es válido para fotones de energía inferior a 0,5 MeV.
- Efecto Compton: El rayo gamma incide en un electrón, expulsándolo del átomo. La energía restante de transforma en una reemisión de una nuevo fotón de rayo gamma de baja energía, aunque en diferente dirección del fotón incidente. El rango de energías va de 100 KeV a 10 MeV (típicamente las que se dan en explosiones nucleares).
- Creación de pares: La energía del fotón gamma, al estar próximo a un núcleo atómico y debido a su interacción con el campo eléctrico, crea un par electrón-positrón. posteriormente este par se combinan en la creación de dos fotones gamma de 0,51 MeV cada uno.

Fundamentos de astronomía de rayos gamma (I)


Introducción

En el mes de diciembre publique una serie artículos donde mostraba una forma de observar el Universo muy diferente a la que habitualmente se conoce. En aquella ocasión se presentaron los fundamentos de la radioastronomía. En esta ocasión presento otra forma de estudiar el universo: la astronomía de rayos gamma.

La astronomía de rayos gamma es aquella en la que se observan fotones de rayos gamma. Estos fotones, de alta energía, se originan en fenómenos violentos tales como GRBs, explosiones de supernovas o chorros de partículas. Al igual que ocurrió con la radioastronomía, veremos que es una técnica radicalmente diferente a los clásicos telescopios ópticos.

Día Internacional del Gato: Astrogatos en el Universo

Hoy, 20 de febrero es el día internacional del gato. ¿Y que hacen los felinos apareciendo en un blog de astronomía? ¡Muy sencillo! Si la física tuviese una mascota oficial sería ¡un gato! De hecho, tanto en Astrofísica y Física como en Vega 0.0 han sido los protagonistas de algunos artículos. ¿Alguien no se ha dado cuenta todavía de que nos encantan los felinos?

Por ejemplo:

Explicación física de por qué los gatos caen siempre de pie

Mecánica cuántica: el gato de Schrödinger

El gato de Schrödinger ayuda a sondear objetos delicados

Más sobre la Nebulosa Pata de Gato

El ojo que no parpadea

Nacimiento estelar en la nebulosa Pata de Gato



Actualización de Vis-FJSevilla


En su momento ya comentamos que nuestra otra página web, Vis-FJSevilla, había tomado un nuevo rumbo (ver artículo "fjsevilla.com renovada"). Tal y como lo describimos en la propia pagina:
"Con la ayuda de Verónica Casanova (autora de la página web Astrofísica y Física) compartiremos nuestras observaciones visuales. Es una época de telescopios computerizados, CCDs, fotografías espectaculares, pero aquí pretendo un enfoque más personal y desvinculado de la tecnología."

Ahora hemos realizado un nuevo cambio en Vis-FJSevilla. El contenido sigue siendo el mismo. Pero cambia el continente. Internamente hemos cambiado su hosting y el CMS (Content Manager Software/Software Gestor de Contenidos) usado con un objetivo: mejorar la experiencia del visitante. Visualmente su nuevo diseño, posible a este cambio, es más sencillo, claro y fácil de leer.

Obviamente a futuro, si la experiencia se muestra positiva, hay otro blog que seguirá los mismos pasos...

Esperamos que os guste el cambio. No dudéis en contactar con nosotros (en la página "Sobre Vis-FJSevilla" hay un formulario de contacto) para hacernos llegar vuestras sugerencias, opiniones, ...

¿Qué es una distancia?

Todos tenemos claro que significado tiene la distancia entre dos puntos, sin embargo, desde el punto de vista matemático, una distancia es un conjunto no vacío E, donde se define una función d:ExE en R que cumple las siguientes propiedades:
1.- d(x,y)>=0, para todo x, y de E
2.- d(x,y)=0, si x=y
3.- d(x,y)=d(y,x), para todo x, y de E
4.- d(x,y)<=d(x,z)+d(z,y) para todo x, y, z de E
De este modo, cada conjunto E dotado de d forma un espacio métrico, que se denota por {E,d}

El asteroide Palas

2 Pallas HST

Palas es el segundo asteroide descubierto, después de Ceres, por lo que formalmente se designa como 2 Palas. Fue descubierto el 28 de Marzo de 1802 por Wilhelm Olbers e inicialmente, al igual que otros asteroides fue considerado un planeta (Tras su descubrimiento, en 1811, Schröter estimó el tamaño de Palas en 3.000 kilómetros). Su nombre procede de Palas Athena, otra denominación de la diosa Athena de la mitología griega.

Se estima que Palas tiene un 7% de la masa total del cinturón de asteroides situado entre Marte y Júpiter, y tiene un diámetro de entre 530 y 560 kilómetros, algo superior al de Vesta (.

La Fábrica de la Ciencias: ondas gravitatorias

No es la primera vez que recomendamos La Fábrica de la Ciencia en Astrofísica y Física. Además, el programa que comparto hoy es de gran actualidad: Ondas Gravitatorias, con la profesora Alicia Sintes de LIGO-UIB.

¡Feliz escucha!




[Artículo cedido por Astrofísica y Física]

La ley de Bode

Bode
La ley de Bode, o de Titius-Bode, hace una relación entre la distancia de un planeta del Sistema Solar con el Sol, en función del número de orden del planeta. La ley inicialmente era a=(n+4)/10, siendo n=0,3,6,12,24,... (cada valor el doble del anterior).

Fue descubierta por Johann D. Titius en 1766, aunque se la atribuyó J.E. Bode en 1772. Sin embargo también se comenta que quizás fue descubierta por C. Wolff en 1724. En aquella época sólo se conocían los planetas clásicos Mercurio, Venus, Tierra, Marte, Júpiter y Saturno, que distan del Sol: 0,38; 0,72; 1,00; 1,52; 5,2; 9,54 unidades astronómicas (1 UA=distancia media Sol-Tierra), encajando perfectamente con la ley de Bode.

En 1781 William Herschel descubre Urano, situado a 19,18 UA, que también coincidía con el valor previsto de esta ley. Debido a este descubrimiento, y a que según la ley, en la quinta posición de la secuencia, a 2,8 UA debía haber algún cuerpo, se comenzó la búsqueda intensa del cuerpo previsto por la ley. En 1801, Giuseppe Piazzi descubrió el asteroide Ceres.

Sin embargo Neptuno viola esta ley, aunque podría ser usada como patrón para la búsqueda de exoplanetas.


Web "Eyes on the Solar System"


Tenemos disponible una nueva aplicación web de la NASA, llamada "Eyes on the Solar System" donde la NASA nos presenta las diferentes misiones espaciales en un mapa 3D del Sistema Solar. Podéis acceder en el siguiente enlace: http://solarsystem.nasa.gov/eyes/

¿Cuántos aumentos puedo usar en mi telescopio?

Telescopio RET50
En muchas ocasiones, uno se pregunta cual es el límite al que puede llevar su telescopio. Para ello hay unas sencillas fórmulas para calcularlo, si bien tendremos que tener en cuenta varias cosas.

Calcular la relación focal:
- Este parámetro nos indica como de luminoso es nuestro instrumento. Normalmente los telescopios refractores suelen tener valores superiores a 10, mientras que los reflectores un valor inferior a 10. Los catadriópticos suelen estar sobre 10. Para calcularlo necesitamos conocer la longitud focal del telescopio así como el diámetro de la lente principal (ambos en mm):
      Relación Focal (f/d): f/d = F [mm] / D [mm]
Ejemplo: Telescopio de 203 mm de diámetro de espejo principal y focal de 1200 mm: f/d=1200/203=5,9

Calcular los aumentos:
- Este valor depende el ocular. Así, si conocemos la focal del ocular en mm podemos calcular los aumentos que proporciona:
      Aumentos: A = F [mm] / Foc [mm]
Ejemplo: Ocular de 25 mm en un telescopio de focal de 1200 mm: A=1200/25=48 aumentos

¿Qué es el "Earth MOID"?

Trayectoria del cometa Elenin

Muchas veces se vuelven populares noticias alarmistas sobre cometas que amenazan nuestro planeta. Un ejemplo de ello fue el paso del cometa Elenin en 2012 y las consecuencias catastrofistas que algunos pretendían asignarle. Suelen emplear términos que pueden llevar a confusión. En la página del JPL/NASA sobre el cometa aparece un parámetro denominado "Earth MOID". Este parámetro no es la distancia más próxima del cometa a la Tierra. El MOID es la mínima distancia que existe entre la órbita de un cometa (o un asteroide) y la órbita, en este caso concreto de la Tierra. El valor para el famoso cometa Elenin fue de 0,0306256 UA (4.500.000 kms), lo que indica que el cometa Elenin, simplemente pasó 4.500.000 kms de la órbita terrestre: en ese momento la Tierra estaba en otro punto diferente la órbita. El cometa Elenin pasó a 35.000.000 kms (unas 0,23 UA) de nosotros.

En el gráfico parece que es muy corta la distancia, pero no lo es: es realmente una distancia astronómica. Estamos hablando de casi 1000 veces la distancia a la Luna. Aún así, hay gente que afirma que hay peligro. Podemos hacer un modelo a escala de este paso para hacernos una idea mejor. Supongamos que la Tierra es una canica de 1 cm de diámetro.

Detectadas por primera vez las ondas gravitatorias: culpable, un agujero negro binario

La Teoría de la Relatividad General de Einstein, publicada por primera vez hace un siglo, fue descrita por el físico Max Born como "la mayor hazaña del pensamiento humano sobre la Naturaleza". La rueda de prensa ofrecida hoy por el LIGO nos ha presentado dos grandes avances científicos que involucran importantes predicciones de la teoría de Einstein: la primera detección directa de ondas gravitatorias y la primera observación de la colisión y fusión de dos agujeros negros.

Este acontecimiento catastrófico que ha producido la señal de ondas de gravedad GW150914, tuvo lugar en una galaxia distante situada a más de mil millones de años luz de distancia de la Tierra. Se observó el pasado 14 de septiembre de 2015 mediante los dos detectores de ondas gravitatorias del LIGO. Los científicos estiman que la potencia del pico radiado de ondas gravitatorias durante los momentos finales de la fusión de los agujeros negros era diez veces superior a la potencia de la luz combinada de todas las estrellas y galaxias del Universo observable. Este notable descubrimiento marca el comienzo de una nueva era en la astronomía: las ondas de gravedad nos abren una nueva ventana al Universo.

En este artículo hablaremos de la noticia presentada por el LIGO y publicada tras la rueda de prensa en la que han anunciado el descubrimiento.

Sigue en directo el esperadísimo anuncio del LIGO sobre las ondas gravitatorias

En el siguiente enlace, comenzará en poco más de una hora una esperadísima rueda de prensa dada por los científicos de LIGO. Los rumores en la red van aumentando a medida que los minutos pasan. ¿Se han detectado evidencias directas de las ondas gravitatorias? ¿Es otra clase de anuncio el que quieren emitir? Entonces, ¿por qué se ha creado tanta expectación?

Desde Vega0.0 vamos a seguir en directo la rueda de prensa y las redes sociales para manteneros al tanto de la información dada.

¿Por qué es tan importante el descubrimiento de las ondas gravitatorias?

[Artículo cedido por Astrofísica y Física]

 Desde hace semanas he leído rumores en la red sobre que se acercaba el anuncio que aseguraba el descubrimiento de la detección directa de ondas gravitatorias. La prudencia llamó a  mi mente, pero los acontecimientos se han ido sucediendo uno tras otro y ahora nos encontramos con que pasado mañana, científicos del LIGO van a dar una rueda de prensa. ¿Casualidad? ¿Qué nos quieren contar? ¿Se han descubierto realmente las ondas gravitatorias?

Lo único seguro es que todavía tenemos que esperar dos días para poder dar respuesta a las preguntas anteriores. 

Pero, ¿por qué es tan importante este descubrimiento?

Destellos desde Vega: Rueda de prensa de LIGO

LIGO Hanford Control Room. Crédito: Tobin Fricke/Philip Neustrom/en.wikipedia.org

Gran expectación ante la rueda de prensa anunciada para presentar los últimos resultados del Advanced LIGO (Livingston, Washington). Según los rumores, y en base a posibles señales de septiembre y diciembre, LIGO podría haber detectado ondas gravitacionales, como resultado de la colisión de dos agujeros negros, de 29 y 36 masas solares, creándose uno único de 62 masas solares. 

La rueda de prensa será mañana día 11 de febrero de 2016 a las 16:30 horas de España. En el siguiente enlace podrás encontrar información adicional: "THURSDAY: Scientists to provide update on the search for gravitational waves". También puedes saber el motivo de la importancia de la ondas gravitacionales en el artículo "¿Por qué es tan importante el descubrimiento de las ondas gravitatorias?" de Astrofísica y Física.

El "meteorito" de Urkiola


En la cima de Urkiola, dentro del parque natural de Urkiola (Vizcaya), podremos visitar un hermoso santuario, y en unos de sus jardines, ¿un meteorito? [fotografía] Según dice la leyenda dando vueltas a esta roca se encontrará marido o novio. Sin embargo no se trata de un meteorito y esta roca (que es de un mineral de hierro sacado de la mina de Santa Lucía.) fue colocada en este lugar el 29 de Noviembre de 1929 por orden de D. Benito de Vizcarra, rector por aquel entonces del Santuario de Urkiola, tal y como descubrió el historiador Jon Irazabal y publicado por el diario Deia.


Barrio astronómico en Valladolid

Vista aérea del barrio de la Victoria en Valladolid

El barrio de la Victoria, en Valladolid, tiene un conjunto muy curioso de calles con nombres astronómicos. En particular con nombres de cuerpos del Sistema Solar, tales como plaza del cosmos, calles Saturno, Tierra, Marte, Júpiter, Venus o Plutón.

La edad del Universo


R(t) nos indica como evoluciona el Universo. En el gráfico del post se puede ver como el Universo se expande a un ritmo descendiente lentamente. Así H(0) representa el gradiente de la curva. Si proyectamos la tangente hasta cruzar con el eje x (Que ocurre cuando R(t)=0) entonces tenemos el llamado Tiempo de Hubble. El Tiempo de Hubble es una estimación de la edad del universo:
   t = 1 / (H(0))

Esta edad es sólo precisa cuando el ritmo de expansión es constante, pero este caso solo se daría en un Universo vacío, carente de atracción gravitatoria. El modelo estándar, con un Universo con materia y densidad crítica, tendríamos:
   t = 2 / (3 x H(0))
Es importante ver que la edad del Universo, en cualquiera de los casos está en el orden de 1/H(0). También, es recomendable usar dichas ecuaciones en SI (1/s) en lugar de lo habitual (km/s·Mpc)

La magnitud absoluta en asteroides y cometas


La magnitud absoluta de una estrella, sería la magnitud aparente que tendría la estrella si estuviese situada a 10 parsecs de distancia, pero, ¿Cómo se calcula este valor para un cometa o asteroide?

Al estar a distancias mucho menores de nosotros, pierde sentido indicar la magnitud que tendrían a 10 parsecs. Por eso la magnitud absoluta en el caso de cometas y asteroides es la magnitud que tendría el cuerpo si cumple tres condiciones:
1.- Estar a 1 UA del Sol
2.- Estar a 1 UA de la Tierra
3.- La superficie que nos sería visible es 100% iluminada por el Sol

Existe una fórmula para conocer la magnitud aparente del cuerpo:
      m = M + 2,5 x log [ (d(Sol)^2 x d(Tierra)^2) / fase ]
donde m es la magnitud aparente, M la absoluta, d(Sol) la distancia al Sol en UA, d(Tierra) la distancia a la Tierra, y la fase entre 0 y 1. El logaritmo es en base 10 y el símbolo ^2 indica 'elevado al cuadrado'.

Amplias vistas de Marte desde la Mars Express

[Artículo cedido por Astrofísica y Física]

Imagen de amplio campo de la región volcánica de Tharsis, capturada el 29 de junio de 2014 por la sonda Mars Express. En el centro se aprecia el Monte Olumpus y en la parte superior, de izquierda a derecha, Ascraeus Mons, Pavonis Mons, y Arsia Mons. Noctis Labyrinthus se puede ver cerca del horizonte en la parte superior izquierda. Crédito: ESA / DLR / FU Berlin / Justin Cowart.
El geólogo Justin Cowart ha procesado imágenes de Marte tomadas con la cámara de alta resolución HRSC a bordo de la Mars Express con un resultado que resulta un regalo para la vista. Entre ellas, en la Sociedad Planetaria, han publicado cuatro de sus trabajos: una imagen en la que aparecen los cuatro volcanes de la región Tharsis de Marte, la zona volcánica Elysium, el polo norte del planeta y por último una fotografía junto a la cuenta Hellas.

Destellos desde Vega: Cometa 67P/Churyumov–Gerasimenko. 23 de enero

Crédito: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA 

El pasado 26 de enero una nueva imagen del cometa 67P/Churyumov–Gerasimenko ha sido publicada por la Agencia Espacial Europea (ESA). Fue tomada el 23 de enero 2016 usando el instrumento OSIRIS a bordo de Rosetta. En dicho momento Rosetta se encontraba a 75,1 kilómetros del cometa. La resolución de la imagen es de 1,37 metros por píxel.


Planetas en febrero

PLANETAS TELÚRICOS
Posiciones heliocéntricas de los planetas telúricos a mediados de febrero 2016

Ascensión Recta
Declinación (J2000)
Día 1
Día 15
Día 29
Mercurio
19h13m16.951s
20h16m17.320s
21h39m16.664s
-20 39' 55.39"
-20 21' 25.56"
-16 04' 58.89"
Venus
18h44m42.790s
19h58m50.054s
21h10m27.040s
-22 22' 22.37"
-20 39' 37.80"
-16 58' 16.01"
Marte
4h51m24.550s
15h17m58.087s
15h42m13.251s
-14 53' 42.80"
-16 46' 48.48"
-18 18' 54.34"
Tablas con las coordenadas J2000 y con datos para la observación de los planetas telúricos a primeros, mediados y finales del mes en el momento de su tránsito por el meridiano local de Donostia / San Sebastián en tiempo local. Fuente JPL

La Luna en febrero 2016

FASES DE LA LUNA EN ENERO 2016
Febrero 2016
día
Hora
(Tiempo Local)
Constelación
Orto
Tránsito
Ocaso
Cuarto Menguante
1
04:28
Libra
01:43
07:11
12:34
Luna Nueva
8
15:39
Acuario
07:52
13:13
18:39
Cuarto Creciente
15
08:47
Tauro
12:16
19:31
02:53
Luna Llena
22
19:20
Leo
18:43
01:30
08:09
Las horas, en Tiempo Local, de los Ortos, Tránsitos y Ocasos están calculadas para Donostia/San Sebastián. En verde aparecen las horas del día anterior al señalado en la tabla y en rojo las del posterior.









PERIGEO(s) Y APOGEO(s) DE LA LUNA EN FEBRERO 2016
Enero 2016
día
Hora
(Tiempo Local)
Constelación
Distancia a la Tierra en Km
Perigeo
11
03:41
Piscis
364 360.9
Apogeo
27
04:27
Virgo
405 383.7
Perigeo es el punto de la órbita lunar más próximo a la Tierra y Apogeo el más alejado


Conjunciones de la Luna con los planetas en orden secuencial a lo largo del mes
Tablas de las conjunciones de la Luna y los planetas con las horas en Tiempo Local, las coordenadas J2000 y los datos para la observación de los eventos desde Donostia / San Sebastián. Los datos de separación en la conjunción son en minutos de arco y el ángulo de posición del planeta respecto de la Luna se mide desde la dirección Norte de ésta abriéndose hacia el Este. Por ej.: Si el ángulo de posición del planeta es de 180º, y su separación es de 200’ esto quiere decir que se encuentra 200 minutos de arco al Sur de la Luna. Fuente JPL y OAN

Constelaciones de febrero

EL CIELO A SIMPLE VISTA
CONSTELACIONES, ESTRELLAS BRILLANTES Y PLANETAS EN FEBRERO 2016 


Los anocheceres de febrero, entre el final del crepúsculo y la medianoche, nos permiten ver en la eclíptica, culminando a gran altura, la constelación de TAURO, con el singular cúmulo abierto de Las Pléyades (M45), y la gigante naranja Aldebarán (Alpha Tau), el "rojo ojo del toro celeste"; y seguidamente, la constelación de GÉMINIS, con Cástor y Pólux. (Alpha y Beta Gem). 

Debajo de ellas vemos al formidable ORIÓN "el cazador" con su característico cinturón que alinea de izquierda a derecha a AlnitakAlnilam y Mintaka (Zeta, Épsilon y Delta Ori ); un poco más abajo tenemos su "tahalí" donde con unos simples prismáticos podemos ver la brillante Nebulosa de Orión (M42); también nos llamarán la atención la dorada Betelgeuse (Alpha Ori), en el hombro del brazo que levanta la espada, y la brillante Rígel, (Beta Ori) en el pie avanzado. Más abajo, también sobre el horizonte meridional, la estrella más brillante del firmamento nocturno, Sirio (Alpha CMa) en la constelación del CAN MAYOR, y a su izquierda y por encima, al otro lado de la Vía Láctea, la estrella principal del CAN MENORProción (Alpha CMi).